Online Influence Maximization under Linear Threshold Model

Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen

Motivation

- Online influence maximization (OIM)
- A sequential decision-making problem
- Selects a set of users and provides them with free products
- Receives feedback from the information diffusion process
- Common influence propagation models: independent cascade (IC) model, linear threshold (LT) model
- Existing works mainly focus on the IC model with edge-level feedback
- The IC model assumes the information spreads through each edge independently.
- The edge-level feedback means that the learner could observe the influence status of each edge once its start node is influenced.
- The LT model characterizes the herd behavior that often occurs in real information diffusion process, that with more active in-neighbors, a user becomes much more likely to be influenced.

Setting

- Graph G = (V, E): V is the set of users (nodes) and E is the set of relationships (edges) between users
- Each edge $e_{u,v} \in E$ is associated with a weight $w(e_{u,v})$ representing the influence ability of u on v
- -Let n = |V|, m = |E|, D to be node number, edge number and the diameter respectively, where the diameter of the graph is defined as the maximum (directed) distance between the pair of nodes in any connected component.
- The diffusion process starting from seed set S
- -Each node is assigned with a threshold θ_v , which is independently uniformly drawn from [0, 1] and characterizes the susceptibility level of v.
- Let S_{τ} be the set of activated nodes by the end of time τ .
- * At time $\tau = 0$, only nodes in the seed set are activated: $S_0 = S$.
- * At time $\tau + 1$ with $\tau \ge 0$, for any node $v \notin S_{\tau}$ that has not been activated yet, it will be activated if the aggregated influence of its active in-neighbors exceeds its threshold: $\sum \quad w(e_{u,v}) \ge \theta_v.$ $u \in N(v) \cap S_{\tau}$
- * Such diffusion process will last at most D time steps.
- The size of the influenced nodes: $r(S, w, \theta) = |S_D|$
- -Let $r(S, w) = \mathbb{E}[r(S, w, \theta)]$ be the *influence spread* of seed set S where the expectation is taken over all random variables θ_{ν} 's.
- The (offline) IM problem
- Aims at finding the seed set S with the size at most K under weight vector w to maximize the influence spread, $\max_{S:|S| \le K} r(S, w)$.
- This problem is NP-hard under the LT model but can be approximately solved.
- Let Opt_w be the maximum influence spread under weight vector w
- The online IM (OIM) problem, in each round *t*:
- The learner chooses a set of nodes S_t with limited size K
- The learner observes (full) node-level feedback $S_{t,0}, S_{t,1}, \ldots, S_{t,D}$, where $S_{t,i}$ represents the set of active nodes by time step $i \in [D]$ in the diffusion process in this round.

- The learner updates its knowledge on unknown weights using the observed feedback, which helps the seed set selection in the next round.

• The goal of the learner is to minimize the expected cumulative η -scaled regret

$$R(T) = \mathbb{E}\left[\sum_{t=1}^{T} R_t\right] = \mathbb{E}\left[\eta \cdot T \cdot \operatorname{Opt}_w - \sum_{t=1}^{T} r(S_t, w)\right]$$

Algorithm

- $\tau_1(v) := \min_{\tau} \{\tau = 0, \dots, D : N(v) \cap S_{\tau} \neq \emptyset\}$ is the earliest time step when node v has active neighbors, set $\tau_1(v) = D + 1$ if node v has no active in-neighbor until the diffusion ends.
- $\tau_2(v) := \left\{ \tau = 0, \dots, D : \chi(E_{\tau-2}(v))^\top w_v < \theta_v \le \chi(E_{\tau-1}(v))^\top w_v \right\}$ is the time step that node v is influenced, set $\tau_2(v) = D + 1$ if node v is finally not influenced after the information diffusion ends.
- $E_{\tau}(v) := \{e_{u,v} : u \in N(v) \cap S_{\tau}\}$ is the set of incoming edges associated with active inneighbors of v at time step τ .

LT-LinUCB Algorithm:

- 1. Input: Graph G = (V, E); seed set cardinality K; explore offline oracle PairOracle
- 2. Initialize: $M_{0,v} \leftarrow I \in \mathbb{R}^{|N(v)| \times |N(v)|}, b_{0,v} \leftarrow 0 \in \mathbb{R}^{|N(v)| \times 1}, \hat{w}_{0,v} \leftarrow 0 \in \mathbb{R}^{|N(v)| \times 1}$ for any node $v \in V$
- 3. for $t = 1, 2, 3, \ldots$
- 4. Compute the confidence ellipsoid $C_{t,v} = \left\{ w'_v \in [0,1]^{|N|} \right\}$ for any node $v \in V$
- 5. Compute the pair (S_t, w_t) by PairOracle with confident cardinality K
- 6. Select the seed set S_t and observe the feedback
- 7. //Update
- 8. for node $v \in V$
- Initialize $A_{t,v} \leftarrow 0 \in \mathbb{R}^{|N(v)| \times 1}, y_{t,v} \leftarrow 0 \in \mathbb{R}$ Q
- 10.
- if v is influenced and $\tau = \tau_{t,2}(v) 1$
- 12. $A_{t,v} = \chi (E_{t,\tau}(v)), \quad y_{t,v} = 1$
- else if $\tau = \tau_1(v), \ldots, \tau_2(v) 2$ or $\tau = \tau_2(v) 1$ but v is not influenced 13. $A_{t,v} = \chi (E_{t,\tau}(v)), \quad y_{t,v} = 0$ 14.
- $M_{t,v} \leftarrow M_{t-1,v} + A_{t,v}A_{t,v}^{\dagger}, \ b_{t,v} \leftarrow b_{t-1,v} + y_{t,v}A_{t,v}$ 15.

Analysis

- For the seed set S, define the set of all nodes related to a node v, V_{Sv} , to be the set of nodes that are on any path from S to v in graph G.
- For seed set S and node $u \in V \setminus S$, define $N_{S,u} := \sum_{v \in V \setminus S} \mathbb{1}\{u \in V_{S,v}\} \le n K$ to be the number of nodes that u is relevant to.

ation parameter
$$\rho_{t,v} > 0$$
 for any t, v ;

$$|w_{v}' - \hat{w}_{t-1,v}||_{M_{t-1,v}} \leq \rho_{t,v}$$

ence set $C_{t} = \{C_{t,v}\}_{v \in V}$ and seed set

$$\leq \tau_{t,2}(v) - 1 \}$$

$$v, \ \hat{w}_{t,v} = M_{t,v}^{-1} b_{t,v}$$

seed sets

$$\gamma(G) := \max_{S \in \mathcal{A}} \sqrt{\sum_{u \in V} N_{S,u}^2} \le (n - K)\sqrt{n} = O(n^{3/2}),$$

which is a constant related to the graph.

as

$$|r(S, w') - r(S, w)| \le \mathbb{E} \left[\sum_{v \in V \setminus S} \sum_{u \in V_{S,v}} \sum_{\tau = \tau_1(u)}^{\tau_2(u) - 1} \left| \sum_{e \in E_{\tau}(u)} (w'(e) - w(e)) \right| \right]$$

where the definitions of $\tau_1(u), \tau_2(u)$ and $E_{\tau}(u)$ are all under weight vector w, and the expectation is taken over the randomness of the thresholds on nodes. **Theorem 2** (Upper Bound). Suppose the LT-LinUCB runs with an (α, β) -approximation PairOracle and parameter $\rho_{t,v} = \rho_t = \sqrt{n \log(1+tn)} + 2 \log \frac{1}{\delta} + \sqrt{n}$ for any node $v \in V$. Then the $\alpha\beta$ -scaled regret satisfies

 $R(T) \le 4\rho_T \gamma(G) D \sqrt{mnT \log(1+T) / \log(1+n)} + n\delta \cdot T(n-k).$

Conclusions

- distill effective information from observations.
- Prove a novel GOM bounded smoothness property for the spread function.
- bound of $O(\operatorname{poly}(m)\sqrt{T}\ln(T))$.
- distribution-independent regret bounds.
- computation.
- son sampling to influence maximization

References

- cessing Systems, pages 1161–1171, 2017.
- Information Processing Systems, pages 3022–3032, 2017.

• Then for the vector $N_S = (N_{S,u})_{u \in V}$, define the upper bound of its L^2 -norm over all feasible

Theorem 1 (GOM bounded smoothness). For any two weight vectors $w, w' \in [0, 1]^m$ with $\sum_{u \in N(v)} w(e_{u,v}) \leq 1$, the difference of their influence spread for any seed set S can be bounded

When $\delta = 1/(n\sqrt{T})$, $R(T) \leq C \cdot \gamma(G) Dn\sqrt{mT} \log(T)$ for some universal constant C.

• Formulate the problem of OIM under LT model with node-level feedback and design how to

• Propose LT-LinUCB algorithm with rigorous theoretical analysis and show a competitive regret

• Design OIM-ETC algorithm with theoretical analysis on its distribution-dependent and

– Efficient, applies to both LT and IC models, and has less requirements on feedback and offline

• Future work: The OIM problem under IC model with node-level feedback; Applying Thomp-

^[1] Qinshi Wang and Wei Chen. Improving regret bounds for combinatorial semi-bandits with probabilistically triggered arms and its applications. In Advances in Neural Information Pro-

^[2] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maximization under independent cascade model with semi-bandit feedback. In Advances in Neural